If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+64x+150=0
a = -16; b = 64; c = +150;
Δ = b2-4ac
Δ = 642-4·(-16)·150
Δ = 13696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13696}=\sqrt{64*214}=\sqrt{64}*\sqrt{214}=8\sqrt{214}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-8\sqrt{214}}{2*-16}=\frac{-64-8\sqrt{214}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+8\sqrt{214}}{2*-16}=\frac{-64+8\sqrt{214}}{-32} $
| z/9+10=12 | | 3x^2+21x-180=0 | | x+(x/0.1)=25000000 | | 40x+190=25x+175 | | 2x+(35)=103 | | 1/3(18x12x)=6(2x-7) | | y-1/10=3/8 | | u+11=-10.74 | | n+4n-22=7N7n | | 9=m+17/2- | | 5/7x=-5/6 | | 8/9i+12=2/9=34 | | 6/z=1/6 | | 45+1.5x=-1.5 | | 1/3=2p | | -8=x+÷-2 | | p/1=2÷3 | | p/1/3=2 | | -(y÷4)+5=1 | | 1/3(x-3)=2 | | 98-t=35 | | 2x^2+2=152 | | 5x-18=3x-6 | | -4x+20=5x-20 | | 5a+9=20 | | 32^x=(1/128)^x-6 | | 15-4k=5 | | -14=c+6 | | 5=1/5t | | 45m+100m=200 | | 7y=5(2 | | 2/3u=8 |